EN | PT | TR | RO | BG | SR
;

Módulo 7. MODELAÇÃO DE EQUAÇÕES ESTRUTURAİS (SEM) COM AMOS


RESUMO

O principal foco de interesse no Módulo 7 é a explicação dos passos para a realização de modelação de Equações Estruturais (MEV) no AMOS. A fim de tornar as etapas do MEV mais fáceis de entender, no início do módulo é fornecido um breve esboço geral do MEV, sua função e conceitos básicos. Isto é seguido por uma explicação completa das etapas do SEM no AMOS, incluindo a interface do AMOS, importação dos arquivos para o AMOS, cumprir os requisitos para MEV e instruções sobre como conduzir o SEM no AMOS. No final, os passos dados para a realização de SEM em AMOS são resumidos para a conveniência do leitor.

 

 

Autores:

Ezgi Güney UYGUN

Dr. Mustafa ÖZGENEL


OBJECTIVOS DE APRENDIZAGEM

ROTEIRO DO MÓDULO

Objetivos

Capítulo 1. INTRODUÇÃO

Objetivo 1 – Conceitos-chave da modelagem de equações estruturais

Objetivo 1.1. – Variáveis observadas e latentes

Objetivo nº 1.2. – Variáveis Exógenas e Endógenas

Objetivo nº 1.3. – Variáveis Mediadoras e Moderadoras

Objetivo 1.4. – Modelos de Análise Fatorial Confirmatória

Objetivo nº 1.5. – Modelos de Equações Estruturais

 

Capítulo 2. ETAPAS DA MODELAGEM DE EQUAÇÕES ESTRUTURAIS (MEV) COM AMOS

Objetivo 1 – Abertura do arquivo de dados a ser analisado

Objetivo 2 – Determinação do Pressuposto de Normalidade

Objetivo 3 – Criação do Modelo Estrutural

Objetivo 4 – Testar o Modelo de Medição

Objetivo 5 – Testar o Modelo Estrutural

Objetivo 6 – Modificação

Objetivo 7 – Determinação da validade do modelo


CONTEÚDO DA UNIDADE




REFERÊNCIAS

Aslan Gördesli, M., Arslan, R., Çekici, F., Aydın Sünbül, Z., & Malkoç, A. (2018). The psyhometric properties of Mindfulness in Parenting Questionnaire (MIPQ) in Turkish sample. European Journal of Education Studies, 5(5), 175–188. https://doi.org/10.5281/zenodo.1477467   

Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173-1182. https://doi.org/10.1037/0022-3514.51.6.1173   

Bodoff, D., & Ho, S. Y. (2016). Partial least squares Structural Equation Modeling approach for analyzing a model with a binary indicator as an endogenous variable. Communications of the Association for Information Systems, 38(23), 400-419. https://doi.org/10.17705/1CAIS.03823  

Bollen, K. A., & Noble, M. D. (2011). Structural equation models and the quantification of behavior. Proceedings of the National Academy of Sciences, 108(3), 15639-15646. https://doi.org/10.1073/pnas.1010661108

Brown, K. W., & Ryan, R. M. (2003). The benefits of being present: Mindfulness and its role in psychological well-being. Journal of Personality and Social Psychology, 84(4), 822–848. https://doi.org/10.1037/0022-3514.84.4.822

Byrne, B. M. (2001). Structural Equation Modeling with AMOS, EQS, and LISREL: Comparative approaches to testing for the factorial validity of a measuring instrument. International Journal of Testing, 1(1), 55-86. https://doi.org/10.1207/S15327574IJT0101_4

Cheung, G. W., & Lau, R. S. (2008). Testing mediation and suppression effects of latent variables: Bootstrapping with structural equation models. Organizational Research Methods11(2), 296-325.

Erus, S. M., & Deniz, M. E. (2018). Evlilikte bilinçli farkındalık ölçeğinin geliştirmesi: Geçerlik ve güvenirlik çalışması [Development of mindfulness in marriage scale (MMS): Validity and reliability study]. The Journal of Happiness & Well-Being, 6(2), 96–113.

Gallagher, D., Ting, L., & Palmer, A. (2008). A journey into the unknown; taking the fear out of Structural Equation Modeling with AMOS for the first-time user. The Marketing Review8(3), 255-275.

Hair, J.F., Black, W.C., Babin, B.J., & Anderson, R.E. (2019). Multivariate data analysis. Cengage.

Hayes, A.F. (2022). Introduction to mediation, moderation, and conditional process analysis: A regression based approach. The Guilford Press.

Jin, S., Noh, M., Yang-Wallentin, F., & Lee, Y. (2021). Robust nonlinear Structural Equation Modeling with interaction between exogenous and endogenous latent variables. Structural Equation Modeling: A Multidisciplinary Journal, 28(4), 547-556. https://doi.org/10.1080/10705511.2020.1857255

Kapçı, E. G., Uslu, R., Akgün, E., & Acer, D. (2009). İlköğretim çağı çocuklarında duygu ayarlama: Bir ölçek uyarlama çalışması ve duygu ayarlamayla ilişkili etmenlerin belirlenmesi [Emotion regulation in elementary school children: A scale adaptation study and determination of factors related to emotion regulation]. Turk J Child Adolesc Ment Health, 16(1), 13–20.

Khine, M.S. (2013). Application of Structural Equation Modeling in educational research and practice. Sense Publishers.

Little, T. D., Cunningham, W. A., Shahar, G., & Widaman, K. F. (2002). To parcel or not to parcel: Exploring the question, weighing the merits. Structural Equation Modeling, 9(2), 151–173. https://doi.org/10.1207/S15328007SEM0902_1

Matsunaga, M. (2008). Item parceling in Structural Equation Modeling: A primer. Communication Methods and Measures, 2(4), 260-293. https://doi.org/10.1080/19312450802458935

McCaffrey, S., Reitman, D., & Black, R. (2017). Mindfulness in Parenting Questionnaire (MIPQ): Development and validation of a measure of mindful parenting. Mindfulness, 8, 232–246. https://doi.org/10.1007/s12671-016-0596-7

Özyeşil, Z., Arslan, C., Kesici, Ş., & Deniz, M. E. (2011). Adaptation of the mindful attention awareness scale into Turkish. Education and Science, 36(160), 224–235. http://eb.ted.org.tr/index.php/EB/article/view/697

Raykov, T., & Marcoulides, G. A. (2008). An introduction to applied multivariate analysis. Routledge. http://bayes.acs.unt.edu:8083/BayesContent/class/Jon/ResourcesWkshp/2008_RaykovMarcoulides_Ch3.pdf

Russell, D. W., Kahn, J. H., Spoth, R., & Altmaier, E. M. (1998). Analyzing data from experimental studies: A latent variable Structural Equation Modeling approach. Journal of Counseling Psychology, 45(1), 18–29. https://doi.org/10.1037/0022-0167.45.1.18

Scharkow M. (2017). Bootstrapping. In: J. Matthes, C.S. Davis, & R.F. Potter (Eds), The international encyclopedia of communication research methods (pp. 1-5). John Wiley & Sons. http://doi.org/10.1002/9781118901731.iecrm0017

Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of Structural Equation Models: Tests of significance and descriptive goodness- of-fit measures. Methods of Psychological Research, 8(2), 23-74. https://psycnet.apa.org/record/2003-08119-003 

Schreiber, J. B., Nora, A., Stage, F. K., Barlow, E. A., & King, J. (2006). Reporting Structural Equation Modeling and confirmatory factor analysis results: A review. The Journal of Educational Research, 99(6), 323-338.

Shields, A., & Cicchetti, D. (1997). Emotion regulation among school-age children: The development and validation of a new criterion Q-sort scale [Abstract]. Developmental Psychology, 33(6), 906–916. https://doi.org/10.1037/0012-1649.33.6.906

Smith, T. D., & McMillan, B. F. (2001). A primer of model fit indices in Structural Equation Modeling. Paper presented at the Annual Meeting of the Southwest Educational Research Association, New Orleans, LA.

Stapleton, C. D. (1997, January). Basic concepts and procedures of confirmatory factor analysis. Paper Presented at the Annual Meeting of the Southwest Educational Research Association, Austin.

Streiner, D. L. (2006). Building a better model: an introduction to Structural Equation Modelling. The Canadian Journal of Psychiatry, 51(5), 317-324. https://doi.org/10.1177/070674370605100507

Ullman, J.B. (2006). Structural Equation Modeling: Reviewing the basics and moving forward. Journal of Personality Assessment, 87(1), 35-50. https://doi.org/10.1207/s15327752jpa8701_03 

Whittaker, T. A. (2012). Using the modification index and standardized expected parameter change for model modification. The Journal of Experimental Education, 80(1), 26-44. https://doi.org/10.1080/00220973.2010.531299

Yuan, K.-H., & Bentler, P.M. (2007). Structural Equation Modeling. In C.R. Rao & S. Sinharay (Eds.), Handbook of statistics 26: Psychometrics (pp. 297–358). https://doi.org/10.1016/S0169-7161(06)26010-3